skip to main content


Search for: All records

Creators/Authors contains: "Fiumera, Anthony C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The cost of reproduction is well studied in females but only recently have the costs of mating been investigated in males. Research suggests that males allocate resources between subsequent mating events, resulting in differential success across mating bouts. Selection should favor allocation strategies that match the likelihood of successive matings. The complexity of the system, however, suggests that one fixed strategy is unlikely to be universally favored and thus I predict that genetic variation for different allocation strategies will be segregating in natural populations. To test this, I measured several components of reproductive performance in eight inbred genotypes of Drosophila melanogaster across three sequential mating events. As predicted, there was genetic variation for how previous experience affected a male’s reproductive performance for both the proportion of matings that produced offspring and the proportion of offspring sired (P1). Some genotypes had the highest success in their first matings and declined in successive matings while other genotypes did best in later matings. Mating experience had consistent effects across genotypes on fertility and induced refractoriness to remating. On average, virgin matings produced the highest fertility and third matings most effectively induced refractoriness. Genotype also had a significant effect on fertility. These results have important implications for understanding how selection may be acting on males when there is variation in the likelihood of multiple mating events and could affect the evolution of male allocation strategies in the face of perceived competitors.

     
    more » « less
  2. enetic variation in mitochondrial DNA (mtDNA) provides adaptive potential although the underlying genetic architecture of fitness components within mtDNAs is not known. To dissect functional variation within mtDNAs, we first identified naturally occurring mtDNAs that conferred high or low fitness in Saccharomyces cerevisiae by comparing growth in strains containing identical nuclear genotypes but different mtDNAs. During respiratory growth under temperature and oxidative stress conditions, mitotype effects were largely independent of nuclear genotypes even in the presence of mitonuclear interactions. Recombinant mtDNAs were generated to determine fitness components within high and low fitness mtDNAs. Based on phenotypic distributions of isogenic strains containing recombinant mtDNAs, we found that multiple loci contributed to mitotype fitness differences. These mitochondrial loci interacted in epistatic, non-additive ways in certain environmental conditions. Mito-mito epistasis (i.e. non-additive interactions between mitochondrial loci) influenced fitness in progeny from 4 different crosses, suggesting that mito-mito epistasis is a widespread phenomenon in yeast and other systems with recombining mtDNAs. Furthermore, we found that interruption of coadapted mito-mito interactions produced recombinant mtDNAs with lower fitness. Our results demonstrate that mito-mito epistasis results in functional variation through mitochondrial recombination in fungi, providing modes for adaptive evolution and the generation of mito-mito incompatibilities. 
    more » « less
  3. Abstract

    FemaleDrosophila melanogasterfrequently mate with multiple males in nature as shown through parentage analysis. Although polyandry is well documented, we know little about the timing between mating events in wild Drosophila populations due to the challenge of following behaviours of individual females. In this study, we used the presence of a male reproductive protein that is transferred to the female during mating (Sex Peptide,SP) to determine whether she had recently mated. We sampled females throughout the day, conducted control matings to determine the decay rate ofSPwithin the female reproductive tract and performed computer simulations to fit the observed proportion of mated females to a nonhomogenous Poisson process that defined the expected time between successive matings for a given female. In our control matings, 100% of mated females tested positive forSP0.5 h after the start of mating (ASM), but only 24% tested positive 24 hASM. Overall, 35% of wild‐caught females tested positive for the presence ofSP. Fitting our observed data to our simple nonhomogenous Poisson model provided the inference that females are mating, on average, approximately every 27 h (with 95% credibility interval 23–31 h). Thus, it appears that females are mating a bit less frequently that once per day in this natural population and that mating events tend to occur either early in the morning or late in the afternoon.

     
    more » « less